

django-simple-history

django-simple-history stores Django model state on every create/update/delete.

Documentation

	Usage
	Install

	Quickstart

	Integration with Django Admin

	Querying history

	Advanced Usage
	Version-controlling with South

	Locating past model instance

	History for Third-Party Model

	Recording Which User Changed a Model

Code

Code and issue tracker: https://github.com/treyhunner/django-simple-history

Pull requests are welcome.

Changes

1.3.0 (2013-05-17)

	Fixed bug when using django-simple-history on nested models package

	Allow history table to be formatted correctly with django-admin-bootstrap

	Disallow calling simple_history.register twice on the same model

	Added Python 3 support

	Added support for custom user model (Django 1.5+)

1.2.3 (2013-04-22)

	Fixed packaging bug: added admin template files to PyPI package

1.2.1 (2013-04-22)

	Added tests

	Added history view/revert feature in admin interface

	Various fixes and improvements

Oct 22, 2010

	Merged setup.py from Klaas van Schelven - Thanks!

Feb 21, 2010

	Initial project creation, with changes to support ForeignKey relations.

Usage

Install

This package is available on PyPI [https://pypi.python.org/pypi/django-simple-history/] and Crate.io [https://crate.io/packages/django-simple-history/].

Install from PyPI with pip:

$ pip install django-simple-history

Quickstart

To track history for a model, create an instance of
simple_history.models.HistoricalRecords on the model.

An example for tracking changes on the Poll and Choice models in the
Django tutorial:

from django.db import models
from simple_history.models import HistoricalRecords

class Poll(models.Model):
 question = models.CharField(max_length=200)
 pub_date = models.DateTimeField('date published')
 history = HistoricalRecords()

class Choice(models.Model):
 poll = models.ForeignKey(Poll)
 choice_text = models.CharField(max_length=200)
 votes = models.IntegerField(default=0)
 history = HistoricalRecords()

Now all changes to Poll and Choice model instances will be tracked in
the database.

Integration with Django Admin

To allow viewing previous model versions on the Django admin site, inherit from
the simple_history.admin.SimpleHistoryAdmin class when registering your
model with the admin site.

This will replace the history object page on the admin site and allow viewing
and reverting to previous model versions. Changes made in admin change forms
will also accurately note the user who made the change.

An example of admin integration for the Poll and Choice models:

from django.contrib import admin
from simple_history.admin import SimpleHistoryAdmin
from .models import Poll, Choice

admin.site.register(Poll, SimpleHistoryAdmin)
admin.site.register(Choice, SimpleHistoryAdmin)

Querying history

Querying history on a model instance

The HistoricalRecords object on a model instance can be used in the same
way as a model manager:

>>> from poll.models import Poll, Choice
>>> from datetime import datetime
>>> poll = Poll.objects.create(question="what's up?", pub_date=datetime.now())
>>>
>>> poll.history.all()
[<HistoricalPoll: Poll object as of 2010-10-25 18:03:29.855689>]

Whenever a model instance is saved a new historical record is created:

>>> poll.pub_date = datetime(2007, 4, 1, 0, 0)
>>> poll.save()
>>> poll.history.all()
[<HistoricalPoll: Poll object as of 2010-10-25 18:04:13.814128>, <HistoricalPoll: Poll object as of 2010-10-25 18:03:29.855689>]

Querying history on a model class

Historical records for all instances of a model can be queried by using the
HistoricalRecords manager on the model class. For example historical
records for all Choice instances can be queried by using the manager on the
Choice model class:

>>> choice1 = poll.choice_set.create(choice='Not Much', votes=0)
>>> choice2 = poll.choice_set.create(choice='The sky', votes=0)
>>>
>>> Choice.history
<simple_history.manager.HistoryManager object at 0x1cc4290>
>>> Choice.history.all()
[<HistoricalChoice: Choice object as of 2010-10-25 18:05:12.183340>, <HistoricalChoice: Choice object as of 2010-10-25 18:04:59.047351>]

Advanced Usage

Version-controlling with South

By default, Historical models live in the same app as the model they track.
Historical models are tracked by South in the same way as any other model.
Whenever the original model changes, the historical model will change also.

Therefore tracking historical models with South should work automatically.

Locating past model instance

Two extra methods are provided for locating previous models instances on
historical record model managers.

as_of

This method will return an instance of the model as it would have existed at
the provided date and time.

>>> from datetime import datetime
>>> poll.history.as_of(datetime(2010, 10, 25, 18, 4, 0))
<HistoricalPoll: Poll object as of 2010-10-25 18:03:29.855689>
>>> poll.history.as_of(datetime(2010, 10, 25, 18, 5, 0))
<HistoricalPoll: Poll object as of 2010-10-25 18:04:13.814128>

most_recent

This method will return the most recent copy of the model available in the
model history.

>>> from datetime import datetime
>>> poll.history.most_recent()
<HistoricalPoll: Poll object as of 2010-10-25 18:04:13.814128>

History for Third-Party Model

To track history for a model you didn’t create, use the
simple_history.register utility. You can use this to track models from
third-party apps you don’t have control over. Here’s an example of using
simple_history.register to history-track the User model from the
django.contrib.auth app:

from simple_history import register
from django.contrib.auth.models import User

register(User)

Recording Which User Changed a Model

To denote which user changed a model, assign a _history_user attribute on
your model.

For example if you have a changed_by field on your model that records which
user last changed the model, you could create a _history_user property
referencing the changed_by field:

from django.db import models
from simple_history.models import HistoricalRecords

class Poll(models.Model):
 question = models.CharField(max_length=200)
 pub_date = models.DateTimeField('date published')
 changed_by = models.ForeignKey('auth.User')
 history = HistoricalRecords()

 @property
 def _history_user(self):
 return self.changed_by

 @_history_user.setter
 def _history_user_setter(self, value):
 self.changed_by = value

Index

 nav.xhtml

 Table of Contents

 		django-simple-history

 		Usage

 		Install

 		Quickstart

 		Integration with Django Admin

 		Querying history

 		Querying history on a model instance

 		Querying history on a model class

 		Advanced Usage

 		Version-controlling with South

 		Locating past model instance

 		as_of

 		most_recent

 		History for Third-Party Model

 		Recording Which User Changed a Model

_static/plus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

_static/comment.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/comment-close.png

_static/up.png

_static/down-pressed.png

