
django-simple-history Documentation
Release 3.1.0.post1+gbfc5204

Corey Bertram

Apr 23, 2022

Contents

1 Contribute 3

2 Documentation 5
2.1 Quick Start . 5
2.2 Querying History . 7
2.3 Admin Integration . 11
2.4 Historical Model Customizations . 13
2.5 User Tracking . 19
2.6 Signals . 22
2.7 History Diffing . 22
2.8 Multiple databases . 23
2.9 Utils . 24
2.10 Common Issues . 24

3 Changes 31
3.1 Unreleased . 31
3.2 3.1.0 (2022-04-09) . 31
3.3 3.0.0 (2021-04-16) . 32
3.4 2.12.0 (2020-10-14) . 32
3.5 2.11.0 (2020-06-20) . 33
3.6 2.10.0 (2020-04-27) . 33
3.7 2.9.0 (2020-04-23) . 33
3.8 2.8.0 (2019-12-02) . 34
3.9 2.7.3 (2019-07-15) . 34
3.10 2.7.2 (2019-04-17) . 34
3.11 2.7.1 (2019-04-16) . 34
3.12 2.7.0 (2019-01-16) . 34
3.13 2.6.0 (2018-12-12) . 35
3.14 2.5.1 (2018-10-19) . 35
3.15 2.5.0 (2018-10-18) . 35
3.16 2.4.0 (2018-09-20) . 35
3.17 2.3.0 (2018-07-19) . 35
3.18 2.2.0 (2018-07-02) . 36
3.19 2.1.1 (2018-06-15) . 36
3.20 2.1.0 (2018-06-04) . 36
3.21 2.0 (2018-04-05) . 36
3.22 1.9.1 (2018-03-30) . 36

i

3.23 1.9.0 (2017-06-11) . 37
3.24 1.8.2 (2017-01-19) . 37
3.25 1.8.1 (2016-03-19) . 37
3.26 1.8.0 (2016-02-02) . 37
3.27 1.7.0 (2015-12-02) . 37
3.28 1.6.3 (2015-07-30) . 37
3.29 1.6.2 (2015-07-04) . 37
3.30 1.6.1 (2015-04-21) . 38
3.31 1.6.0 (2015-04-16) . 38
3.32 1.5.4 (2015-01-03) . 38
3.33 1.5.3 (2014-11-18) . 38
3.34 1.5.2 (2014-10-15) . 38
3.35 1.5.1 (2014-10-13) . 38
3.36 1.5.0 (2014-08-17) . 39
3.37 1.4.0 (2014-06-29) . 39
3.38 1.3.0 (2013-05-17) . 39
3.39 1.2.3 (2013-04-22) . 39
3.40 1.2.1 (2013-04-22) . 39
3.41 Oct 22, 2010 . 40
3.42 Feb 21, 2010 . 40

Index 41

ii

django-simple-history Documentation, Release 3.1.0.post1+gbfc5204

django-simple-history stores Django model state on every create/update/delete.

This app supports the following combinations of Django and Python:

Django Python
3.2 3.7, 3.8, 3.9
4.0 3.8, 3.9, 3.10

Contents 1

http://travis-ci.org/jazzband/django-simple-history
https://django-simple-history.readthedocs.io/en/latest/?badge=latest
http://codecov.io/github/jazzband/django-simple-history?branch=master
https://pypi.python.org/pypi/django-simple-history
https://codeclimate.com/github/treyhunner/django-simple-history/maintainability
https://pepy.tech/project/django-simple-history
https://jazzband.co/

django-simple-history Documentation, Release 3.1.0.post1+gbfc5204

2 Contents

CHAPTER 1

Contribute

• Issue Tracker: https://github.com/jazzband/django-simple-history/issues

• Source Code: https://github.com/jazzband/django-simple-history

Pull requests are welcome.

3

https://github.com/jazzband/django-simple-history/issues
https://github.com/jazzband/django-simple-history

django-simple-history Documentation, Release 3.1.0.post1+gbfc5204

4 Chapter 1. Contribute

CHAPTER 2

Documentation

2.1 Quick Start

2.1.1 Install

Install from PyPI with pip:

$ pip install django-simple-history

2.1.2 Configure

Settings

Add simple_history to your INSTALLED_APPS

INSTALLED_APPS = [
...
'simple_history',

]

The historical models can track who made each change. To populate the history user automatically you can add
HistoryRequestMiddleware to your Django settings:

MIDDLEWARE = [
...
'simple_history.middleware.HistoryRequestMiddleware',

]

If you do not want to use the middleware, you can explicitly indicate the user making the change as documented in
User Tracking.

5

https://pypi.python.org/pypi/django-simple-history/

django-simple-history Documentation, Release 3.1.0.post1+gbfc5204

Track History

To track history for a model, create an instance of simple_history.models.HistoricalRecords on the
model.

An example for tracking changes on the Poll and Choice models in the Django tutorial:

from django.db import models
from simple_history.models import HistoricalRecords

class Poll(models.Model):
question = models.CharField(max_length=200)
pub_date = models.DateTimeField('date published')
history = HistoricalRecords()

class Choice(models.Model):
poll = models.ForeignKey(Poll)
choice_text = models.CharField(max_length=200)
votes = models.IntegerField(default=0)
history = HistoricalRecords()

Now all changes to Poll and Choice model instances will be tracked in the database.

Track History for a Third-Party Model

To track history for a model you didn’t create, use the simple_history.register function. You can use this
to track models from third-party apps you don’t have control over. Here’s an example of using simple_history.
register to history-track the User model from the django.contrib.auth app:

from simple_history import register
from django.contrib.auth.models import User

register(User)

If you want to separate the migrations of the historical model into an app other than the third-party model’s app, you
can set the app parameter in register. For instance, if you want the migrations to live in the migrations folder of
the package you register the model in, you could do:

register(User, app=__package__)

2.1.3 Run Migrations

With your model changes in place, create and apply the database migrations:

$ python manage.py makemigrations
$ python manage.py migrate

Existing Projects

For existing projects, you can call the populate command to generate an initial change for preexisting model instances:

$ python manage.py populate_history --auto

6 Chapter 2. Documentation

django-simple-history Documentation, Release 3.1.0.post1+gbfc5204

By default, history rows are inserted in batches of 200. This can be changed if needed for large tables by using the
--batchsize option, for example --batchsize 500.

2.1.4 What Now?

By adding HistoricalRecords to a model or registering a model using register, you automatically start
tracking any create, update, or delete that occurs on that model. Now you can query the history programmatically and
view the history in Django admin.

2.1.5 What is django-simple-history Doing Behind the Scenes?

If you tried the code above and ran the migrations on it, you’ll see the following tables in your database:

• app_choice

• app_historicalchoice

• app_historicalpoll

• app_poll

The two extra tables with historical prepended to their names are tables created by
django-simple-history. These tables store every change that you make to their respective base tables.
Every time a create, update, or delete occurs on Choice or Poll a new row is created in the historical table for that
model including all of the fields in the instance of the base model, as well as other metadata:

• history_user: the user that made the create/update/delete

• history_date: the datetime at which the create/update/delete occurred

• history_change_reason: the reason the create/update/delete occurred (null by default)

• history_id: the primary key for the historical table (note the base table’s primary key is not unique on the
historical table since there are multiple versions of it on the historical table)

• history_type: + for create, ~ for update, and - for delete

Now try saving an instance of Choice or Poll. Check the historical table to see that the history is being tracked.

2.2 Querying History

2.2.1 Querying history on a model instance

The HistoricalRecords object on a model instance can be used in the same way as a model manager:

>>> from polls.models import Poll, Choice
>>> from datetime import datetime
>>> poll = Poll.objects.create(question="what's up?", pub_date=datetime.now())
>>>
>>> poll.history.all()
[<HistoricalPoll: Poll object as of 2010-10-25 18:03:29.855689>]

Whenever a model instance is saved a new historical record is created:

2.2. Querying History 7

django-simple-history Documentation, Release 3.1.0.post1+gbfc5204

>>> poll.pub_date = datetime(2007, 4, 1, 0, 0)
>>> poll.save()
>>> poll.history.all()
[<HistoricalPoll: Poll object as of 2010-10-25 18:04:13.814128>, <HistoricalPoll:
→˓Poll object as of 2010-10-25 18:03:29.855689>]

2.2.2 Querying history on a model class

Historical records for all instances of a model can be queried by using the HistoricalRecords manager on the
model class. For example historical records for all Choice instances can be queried by using the manager on the
Choice model class:

>>> choice1 = poll.choice_set.create(choice_text='Not Much', votes=0)
>>> choice2 = poll.choice_set.create(choice_text='The sky', votes=0)
>>>
>>> Choice.history
<simple_history.manager.HistoryManager object at 0x1cc4290>
>>> Choice.history.all()
[<HistoricalChoice: Choice object as of 2010-10-25 18:05:12.183340>,
→˓<HistoricalChoice: Choice object as of 2010-10-25 18:04:59.047351>]

Because the history is model, you can also filter it like regularly QuerySets, e.g. Choice.history.
filter(choice_text='Not Much') will work!

2.2.3 Getting previous and next historical record

If you have a historical record for an instance and would like to retrieve the previous historical record (older) or next
historical record (newer), prev_record and next_record read-only attributes can be used, respectively.

>>> from polls.models import Poll, Choice
>>> from datetime import datetime
>>> poll = Poll.objects.create(question="what's up?", pub_date=datetime.now())
>>>
>>> record = poll.history.first()
>>> record.prev_record
None
>>> record.next_record
None
>>> poll.question = "what is up?"
>>> poll.save()
>>> record.next_record
<HistoricalPoll: Poll object as of 2010-10-25 18:04:13.814128>

If a historical record is the first record, prev_record will be None. Similarly, if it is the latest record, next_record will
be None

2.2.4 Reverting the Model

SimpleHistoryAdmin allows users to revert back to an old version of the model through the admin interface. You
can also do this programmatically. To do so, you can take any historical object, and save the associated instance. For
example, if we want to access the earliest HistoricalPoll, for an instance of Poll, we can do:

8 Chapter 2. Documentation

django-simple-history Documentation, Release 3.1.0.post1+gbfc5204

>>> poll.history.earliest()
<HistoricalPoll: Poll object as of 2010-10-25 18:04:13.814128>

And to revert to that HistoricalPoll instance, we can do:

>>> earliest_poll = poll.history.earliest()
>>> earliest_poll.instance.save()

This will change the poll instance to have the data from the HistoricalPoll object and it will create a new row
in the HistoricalPoll table indicating that a new change has been made.

2.2.5 as_of

The HistoryManager allows you to query a point in time for the latest historical records or instances. When called
on an instance’s history manager, the as_of method will return the instance from the specified point in time, if the
instance existed at that time, or raise DoesNotExist. When called on a model’s history manager, the as_of method
will return instances from a specific date and time that you specify, returning a queryset that you can use to further
filter the result.

>>> t0 = datetime.now()
>>> document1 = RankedDocument.objects.create(rank=42)
>>> document2 = RankedDocument.objects.create(rank=84)
>>> t1 = datetime.now()

>>> RankedDocument.history.as_of(t1)
<HistoricalQuerySet [

<RankedDocument: RankedDocument object (1)>,
<RankedDocument: RankedDocument object (2)>

]>

>>> RankedDocument.history.as_of(t1).filter(rank__lte=50)
<HistoricalQuerySet [

<RankedDocument: RankedDocument object (1)>
]>

as_of is a convenience: the following two queries are identical.

RankedDocument.history.as_of(t1)
RankedDocument.history.filter(history_date__lte=t1).latest_of_each().as_instances()

If you filter by pk the behavior depends on whether the queryset is returning instances or historical records. When the
queryset is returning instances, pk is mapped to the original model’s primary key field. When the queryset is returning
historical records, pk refers to the history_id primary key.

2.2.6 is_historic and to_historic

If you use as_of to query history, the resulting instance will have an attribute named _history added to it. This property
will contain the historical model record that the instance was derived from. Calling is_historic is an easy way to check
if an instance was derived from a historic timepoint (even if it is the most recent version).

You can use to_historic to return the historical model that was used to furnish the instance at hand, if it is actually
historic.

2.2. Querying History 9

django-simple-history Documentation, Release 3.1.0.post1+gbfc5204

2.2.7 HistoricForeignKey

If you have two historic tables linked by foreign key, you can change it to use a HistoricForeignKey so that chasing
relations from an as_of acquired instance (at a specific timepoint) will honor that timepoint when accessing the related
object(s). This works for both forward and reverse relationships.

See the HistoricForeignKeyTest code and models for an example.

2.2.8 most_recent

This method will return the most recent copy of the model available in the model history.

>>> from datetime import datetime
>>> poll.history.most_recent()
<Poll: Poll object as of 2010-10-25 18:04:13.814128>

2.2.9 Save without a historical record

If you want to save a model without a historical record, you can use the following:

class Poll(models.Model):
question = models.CharField(max_length=200)
history = HistoricalRecords()

def save_without_historical_record(self, *args, **kwargs):
self.skip_history_when_saving = True
try:

ret = self.save(*args, **kwargs)
finally:

del self.skip_history_when_saving
return ret

poll = Poll(question='something')
poll.save_without_historical_record()

Or disable history records for all models by putting following lines in your settings.py file:

SIMPLE_HISTORY_ENABLED = False

2.2.10 Filtering data using a relationship to the model

To filter changes to the data, a relationship to the history can be established. For example, all data records in which a
particular user was involved.

class Poll(models.Model):
question = models.CharField(max_length=200)
log = HistoricalRecords(related_name='history')

Poll.objects.filter(history__history_user=4)

You can also prefetch the objects with this relationship using somthing like this for example to prefetch order by
history_date descending:

10 Chapter 2. Documentation

django-simple-history Documentation, Release 3.1.0.post1+gbfc5204

Poll.objects.filter(something).prefetch_related(Prefetch('history', queryset=Poll.
→˓history.order_by('-history_date'),

to_attr='ordered_histories')

2.3 Admin Integration

To allow viewing previous model versions on the Django admin site, inherit from the simple_history.admin.
SimpleHistoryAdmin class when registering your model with the admin site.

This will replace the history object page on the admin site and allow viewing and reverting to previous model versions.
Changes made in admin change forms will also accurately note the user who made the change.

Clicking on an object presents the option to revert to that version of the object.

(The object is reverted to the selected state)

Reversions like this are added to the history.

2.3. Admin Integration 11

django-simple-history Documentation, Release 3.1.0.post1+gbfc5204

An example of admin integration for the Poll and Choice models:

from django.contrib import admin
from simple_history.admin import SimpleHistoryAdmin
from .models import Poll, Choice

admin.site.register(Poll, SimpleHistoryAdmin)
admin.site.register(Choice, SimpleHistoryAdmin)

Changing a history-tracked model from the admin interface will automatically record the user who made the change
(see User Tracking).

2.3.1 Displaying custom columns in the admin history list view

By default, the history log displays one line per change containing

• a link to the detail of the object at that point in time

• the date and time the object was changed

• a comment corresponding to the change

• the author of the change

You can add other columns (for example the object’s status to see how it evolved) by adding a
history_list_display array of fields to the admin class

from django.contrib import admin
from simple_history.admin import SimpleHistoryAdmin
from .models import Poll, Choice

class PollHistoryAdmin(SimpleHistoryAdmin):
list_display = ["id", "name", "status"]
history_list_display = ["status"]
search_fields = ['name', 'user__username']

admin.site.register(Poll, PollHistoryAdmin)
admin.site.register(Choice, SimpleHistoryAdmin)

12 Chapter 2. Documentation

django-simple-history Documentation, Release 3.1.0.post1+gbfc5204

2.3.2 Disabling the option to revert an object

By default, an object can be reverted to its previous version. To disable this option update your settings with the
following:

SIMPLE_HISTORY_REVERT_DISABLED=True

When SIMPLE_HISTORY_REVERT_DISABLED is set to True, the revert button is removed from the form.

2.4 Historical Model Customizations

2.4.1 Custom history_id

By default, the historical table of a model will use an AutoField for the table’s history_id (the history table’s
primary key). However, you can specify a different type of field for history_id by passing a different field to
history_id_field parameter.

The example below uses a UUIDField instead of an AutoField:

import uuid
from django.db import models
from simple_history.models import HistoricalRecords

class Poll(models.Model):
question = models.CharField(max_length=200)
pub_date = models.DateTimeField('date published')
history = HistoricalRecords(

history_id_field=models.UUIDField(default=uuid.uuid4)
)

Since using a UUIDField for the history_id is a common use case, there is a
SIMPLE_HISTORY_HISTORY_ID_USE_UUID setting that will set all instances of history_id to UUIDs. Set
this with the following line in your settings.py file:

SIMPLE_HISTORY_HISTORY_ID_USE_UUID = True

This setting can still be overridden using the history_id_field parameter on a per model basis.

2.4. Historical Model Customizations 13

django-simple-history Documentation, Release 3.1.0.post1+gbfc5204

You can use the history_id_field parameter with both HistoricalRecords() or register() to change
this behavior.

Note: regardless of what field type you specify as your history_id field, that field will automatically set
primary_key=True and editable=False.

2.4.2 Custom history_date

You’re able to set a custom history_date attribute for the historical record, by defining the property
_history_date in your model. That’s helpful if you want to add versions to your model, which happened before
the current model version, e.g. when batch importing historical data. The content of the property _history_date
has to be a datetime-object, but setting the value of the property to a DateTimeField, which is already defined in
the model, will work too.

from django.db import models
from simple_history.models import HistoricalRecords

class Poll(models.Model):
question = models.CharField(max_length=200)
pub_date = models.DateTimeField('date published')
changed_by = models.ForeignKey('auth.User')
history = HistoricalRecords()
__history_date = None

@property
def _history_date(self):

return self.__history_date

@_history_date.setter
def _history_date(self, value):

self.__history_date = value

from datetime import datetime
from models import Poll

my_poll = Poll(question="what's up?")
my_poll._history_date = datetime.now()
my_poll.save()

2.4.3 Indexed history_date

Many queries use history_date as a filter. The as_of queries combine this with the original model’s primary key
to extract point-in-time snapshots of history. By default the history_date field is indexed. You can control this
behavior using settings.py.

disable indexing on history_date
SIMPLE_HISTORY_DATE_INDEX = False

enable indexing on history_date (default setting)
SIMPLE_HISTORY_DATE_INDEX = True

enable composite indexing on history_date and model pk (to improve as_of queries)
the string is case-insensitive
SIMPLE_HISTORY_DATE_INDEX = "Composite"

14 Chapter 2. Documentation

django-simple-history Documentation, Release 3.1.0.post1+gbfc5204

2.4.4 Custom history table name

By default, the table name for historical models follow the Django convention and just add historical before
model name. For instance, if your application name is polls and your model name Question, then the table name
will be polls_historicalquestion.

You can use the table_name parameter with both HistoricalRecords() or register() to change this
behavior.

class Question(models.Model):
question_text = models.CharField(max_length=200)
pub_date = models.DateTimeField('date published')
history = HistoricalRecords(table_name='polls_question_history')

class Question(models.Model):
question_text = models.CharField(max_length=200)
pub_date = models.DateTimeField('date published')

register(Question, table_name='polls_question_history')

2.4.5 Custom model name

By default, historical model is named as ‘Historical’ + model name. For example, historical records for
Choice is called HistoricalChoice. Users can specify a custom model name via the constructor on
HistoricalRecords. The common use case for this is avoiding naming conflict if the user already defined a
model named as ‘Historical’ + model name.

This feature provides the ability to override the default model name used for the generated history model.

To configure history models to use a different name for the history model class, use an option named
custom_model_name. The value for this option can be a string or a callable. A simple string replaces the de-
fault name of ‘Historical’ + model name with the defined string. The most simple use case is illustrated below using
a simple string:

class ModelNameExample(models.Model):
history = HistoricalRecords(

custom_model_name='SimpleHistoricalModelNameExample'
)

If you are using a base class for your models and want to apply a name change for the historical model for all models
using the base class then a callable can be used. The callable is passed the name of the model for which the history
model will be created. As an example using the callable mechanism, the below changes the default prefix Historical
to Audit:

class Poll(models.Model):
question = models.CharField(max_length=200)
history = HistoricalRecords(custom_model_name=lambda x:f'Audit{x}')

class Opinion(models.Model):
opinion = models.CharField(max_length=2000)

register(Opinion, custom_model_name=lambda x:f'Audit{x}')

The resulting history class names would be AuditPoll and AuditOpinion. If the app the models are defined in is yoda
then the corresponding history table names would be yoda_auditpoll and yoda_auditopinion

2.4. Historical Model Customizations 15

django-simple-history Documentation, Release 3.1.0.post1+gbfc5204

IMPORTANT: Setting custom_model_name to lambda x:f’{x}’ is not permitted. An error will be generated and
no history model created if they are the same.

2.4.6 TextField as history_change_reason

The HistoricalRecords object can be customized to accept a TextField model field for saving the his-
tory_change_reason either through settings or via the constructor on the model. The common use case for this is for
supporting larger model change histories to support changelog-like features.

SIMPLE_HISTORY_HISTORY_CHANGE_REASON_USE_TEXT_FIELD=True

or

class TextFieldExample(models.Model):
greeting = models.CharField(max_length=100)
history = HistoricalRecords(

history_change_reason_field=models.TextField(null=True)
)

2.4.7 Change Base Class of HistoricalRecord Models

To change the auto-generated HistoricalRecord models base class from models.Model, pass in the abstract class in
a list to bases.

class RoutableModel(models.Model):
class Meta:

abstract = True

class Poll(models.Model):
question = models.CharField(max_length=200)
pub_date = models.DateTimeField('date published')
changed_by = models.ForeignKey('auth.User')
history = HistoricalRecords(bases=[RoutableModel])

2.4.8 Excluded Fields

It is possible to use the parameter excluded_fields to choose which fields will be stored on every cre-
ate/update/delete.

For example, if you have the model:

class PollWithExcludeFields(models.Model):
question = models.CharField(max_length=200)
pub_date = models.DateTimeField('date published')

And you don’t want to store the changes for the field pub_date, it is necessary to update the model to:

class PollWithExcludeFields(models.Model):
question = models.CharField(max_length=200)
pub_date = models.DateTimeField('date published')

history = HistoricalRecords(excluded_fields=['pub_date'])

16 Chapter 2. Documentation

django-simple-history Documentation, Release 3.1.0.post1+gbfc5204

By default, django-simple-history stores the changes for all fields in the model.

2.4.9 Adding additional fields to historical models

Sometimes it is useful to be able to add additional fields to historical models that do not exist on the source model.
This is possible by combining the bases functionality with the pre_create_historical_record signal.

in models.py
class IPAddressHistoricalModel(models.Model):

"""
Abstract model for history models tracking the IP address.
"""
ip_address = models.GenericIPAddressField(_('IP address'))

class Meta:
abstract = True

class PollWithExtraFields(models.Model):
question = models.CharField(max_length=200)
pub_date = models.DateTimeField('date published')

history = HistoricalRecords(bases=[IPAddressHistoricalModel,])

define your signal handler/callback anywhere outside of models.py
def add_history_ip_address(sender, **kwargs):

history_instance = kwargs['history_instance']
context.request for use only when the simple_history middleware is on and

→˓enabled
history_instance.ip_address = HistoricalRecords.context.request.META['REMOTE_ADDR

→˓']

in apps.py
class TestsConfig(AppConfig):

def ready(self):
from simple_history.tests.models \

import HistoricalPollWithExtraFields

pre_create_historical_record.connect(
add_history_ip_address,
sender=HistoricalPollWithExtraFields

)

More information on signals in django-simple-history is available in Signals.

2.4.10 Change Reason

Change reason is a message to explain why the change was made in the instance. It is stored in the field
history_change_reason and its default value is None.

By default, the django-simple-history gets the change reason in the field _change_reason of the instance. Also,
it is possible to pass the _change_reason explicitly. For this, after a save or delete in an instance, it is necessary
to call the function utils.update_change_reason. The first argument of this function is the instance and the
second is the message that represents the change reason.

For instance, for the model:

2.4. Historical Model Customizations 17

django-simple-history Documentation, Release 3.1.0.post1+gbfc5204

from django.db import models
from simple_history.models import HistoricalRecords

class Poll(models.Model):
question = models.CharField(max_length=200)
history = HistoricalRecords()

You can create an instance with an implicit change reason.

poll = Poll(question='Question 1')
poll._change_reason = 'Add a question'
poll.save()

Or you can pass the change reason explicitly:

from simple_history.utils import update_change_reason

poll = Poll(question='Question 1')
poll.save()
update_change_reason(poll, 'Add a question')

2.4.11 Deleting historical record

In some circumstances you may want to delete all the historical records when the master record is deleted. This can
be accomplished by setting cascade_delete_history=True.

class Poll(models.Model):
question = models.CharField(max_length=200)
history = HistoricalRecords(cascade_delete_history=True)

2.4.12 Allow tracking to be inherited

By default history tracking is only added for the model that is passed to register() or has the
HistoricalRecords descriptor. By passing inherit=True to either way of registering you can change that
behavior so that any child model inheriting from it will have historical tracking as well. Be careful though, in cases
where a model can be tracked more than once, MultipleRegistrationsError will be raised.

from django.contrib.auth.models import User
from django.db import models
from simple_history import register
from simple_history.models import HistoricalRecords

register() example
register(User, inherit=True)

HistoricalRecords example
class Poll(models.Model):

history = HistoricalRecords(inherit=True)

Both User and Poll in the example above will cause any model inheriting from them to have historical tracking as
well.

18 Chapter 2. Documentation

django-simple-history Documentation, Release 3.1.0.post1+gbfc5204

2.4.13 History Model In Different App

By default the app_label for the history model is the same as the base model. In some circumstances you may want
to have the history models belong in a different app. This will support creating history models in a different database
to the base model using database routing functionality based on app_label. To configure history models in a different
app, add this to the HistoricalRecords instantiation or the record invocation: app="SomeAppName".

class Poll(models.Model):
question = models.CharField(max_length=200)
history = HistoricalRecords(app="SomeAppName")

class Opinion(models.Model):
opinion = models.CharField(max_length=2000)

register(Opinion, app="SomeAppName")

2.4.14 FileField as a CharField

By default a FileField in the base model becomes a TextField in the history model. This is a historical choice
that django-simple-history preserves for backwards compatibility; it is more correct for a FileField to be converted
to a CharField instead. To opt into the new behavior, set the following line in your settings.py file:

SIMPLE_HISTORY_FILEFIELD_TO_CHARFIELD = True

2.4.15 Drop Database Indices

It is possible to use the parameter no_db_index to choose which fields that will not create a database index.

For example, if you have the model:

class PollWithExcludeFields(models.Model):
question = models.CharField(max_length=200, db_index=True)

And you don’t want to create database index for question, it is necessary to update the model to:

class PollWithExcludeFields(models.Model):
question = models.CharField(max_length=200, db_index=True)

history = HistoricalRecords(no_db_index=['question'])

By default, django-simple-history keeps all indices. and even forces them on unique fields and relations. WARNING:
This will drop performance on historical lookups

2.5 User Tracking

2.5.1 Recording Which User Changed a Model

There are four documented ways to attach users to a tracked change:

1. Use the HistoryRequestMiddleware. The middleware sets the User instance that made the request as the
history_user on the history table.

2.5. User Tracking 19

django-simple-history Documentation, Release 3.1.0.post1+gbfc5204

2. Use simple_history.admin.SimpleHistoryAdmin. Under the hood, SimpleHistoryAdmin actu-
ally sets the _history_user on the object to attach the user to the tracked change by overriding the save_model
method.

3. Assign a user to the _history_user attribute of the object as described in the _history_user section.

4. Track the user using an explicit history_user_id, which is described in Manually Track User Model. This
method is particularly useful when using multiple databases (where your user model lives in a separate database to
your historical model), or when using a user that doesn’t live within the Django app (i.e. a user model retrieved from
an API).

Using _history_user to Record Which User Changed a Model

To denote which user changed a model, assign a _history_user attribute on your model.

For example if you have a changed_by field on your model that records which user last changed the model, you
could create a _history_user property referencing the changed_by field:

from django.db import models
from simple_history.models import HistoricalRecords

class Poll(models.Model):
question = models.CharField(max_length=200)
pub_date = models.DateTimeField('date published')
changed_by = models.ForeignKey('auth.User')
history = HistoricalRecords()

@property
def _history_user(self):

return self.changed_by

@_history_user.setter
def _history_user(self, value):

self.changed_by = value

Admin integration requires that you use a _history_user.setter attribute with your custom
_history_user property (see Admin Integration).

Another option for identifying the change user is by providing a function via get_user. If provided it will be called
everytime that the history_user needs to be identified with the following key word arguments:

• instance: The current instance being modified

• request: If using the middleware the current request object will be provided if they are authenticated.

This is very helpful when using register:

from django.db import models
from simple_history.models import HistoricalRecords

class Poll(models.Model):
question = models.CharField(max_length=200)
pub_date = models.DateTimeField('date published')
changed_by = models.ForeignKey('auth.User')

def get_poll_user(instance, **kwargs):
return instance.changed_by

(continues on next page)

20 Chapter 2. Documentation

django-simple-history Documentation, Release 3.1.0.post1+gbfc5204

(continued from previous page)

register(Poll, get_user=get_poll_user)

Manually Track User Model

Although django-simple-history tracks the history_user (the user who changed the model) using a
django foreign key, there are instances where we might want to track this user but cannot use a Django foreign key.

Note: If you want to track a custom user model that is still accessible through a Django foreign key, refer to Change
User Model.

The two most common cases where this feature will be helpful are:

1. You are working on a Django app with multiple databases, and your history table is in a separate database from
the user table.

2. The user model that you want to use for history_user does not live within the Django app, but is only
accessible elsewhere (i.e. through an API call).

There are three parameters to HistoricalRecords or register that facilitate the ability to manually track a
history_user.

history_user_id_field An instance of field (i.e. IntegerField(null=True) or
UUIDField(default=uuid.uuid4, null=True) that will uniquely identify your
user object. This is generally the field type of the primary key on your user object.

history_user_getter optional. A callable that takes the historical instance of the model and returns the
history_user object. The default getter is shown below:

def _history_user_getter(historical_instance):
if historical_instance.history_user_id is None:

return None
User = get_user_model()
try:

return User.objects.get(pk=historical_instance.history_user_id)
except User.DoesNotExist:

return None

history_user_setter optional. A callable that takes the historical instance and the user instance, and sets
history_user_id on the historical instance. The default setter is shown below:

def _history_user_setter(historical_instance, user):
if user is not None:

historical_instance.history_user_id = user.pk

2.5.2 Change User Model

If you need to use a different user model then settings.AUTH_USER_MODEL, pass in the required model to
user_model. Doing this requires _history_user or get_user is provided as detailed above.

from django.db import models
from simple_history.models import HistoricalRecords

class PollUser(models.Model):
user_id = models.ForeignKey('auth.User')

(continues on next page)

2.5. User Tracking 21

django-simple-history Documentation, Release 3.1.0.post1+gbfc5204

(continued from previous page)

Only PollUsers should be modifying a Poll
class Poll(models.Model):

question = models.CharField(max_length=200)
pub_date = models.DateTimeField('date published')
changed_by = models.ForeignKey(PollUser)
history = HistoricalRecords(user_model=PollUser)

@property
def _history_user(self):

return self.changed_by

@_history_user.setter
def _history_user(self, value):

self.changed_by = value

2.6 Signals

django-simple-history includes signals that help you provide custom behavior when saving a historical record. Argu-
ments passed to the signals include the following:

instance The source model instance being saved

history_instance The corresponding history record

history_date Datetime of the history record’s creation

history_change_reason Freetext description of the reason for the change

history_user The user that instigated the change

using The database alias being used

To connect the signals to your callbacks, you can use the @receiver decorator:

from django.dispatch import receiver
from simple_history.signals import (

pre_create_historical_record,
post_create_historical_record

)

@receiver(pre_create_historical_record)
def pre_create_historical_record_callback(sender, **kwargs):

print("Sent before saving historical record")

@receiver(post_create_historical_record)
def post_create_historical_record_callback(sender, **kwargs):

print("Sent after saving historical record")

2.7 History Diffing

When you have two instances of the same HistoricalRecord (such as the HistoricalPoll example above),
you can perform diffs to see what changed. This will result in a ModelDelta containing the following properties:

22 Chapter 2. Documentation

django-simple-history Documentation, Release 3.1.0.post1+gbfc5204

1. A list with each field changed between the two historical records

2. A list with the names of all fields that incurred changes from one record to the other

3. the old and new records.

This may be useful when you want to construct timelines and need to get only the model modifications.

p = Poll.objects.create(question="what's up?")
p.question = "what's up, man?"
p.save()

new_record, old_record = p.history.all()
delta = new_record.diff_against(old_record)
for change in delta.changes:

print("{} changed from {} to {}".format(change.field, change.old, change.new))

diff_against also accepts 2 arguments excluded_fields and included_fields to either explicitly in-
clude or exclude fields from being diffed.

2.8 Multiple databases

2.8.1 Interacting with Multiple Databases

django-simple-history follows the Django conventions for interacting with multiple databases.

>>> # This will create a new historical record on the 'other' database.
>>> poll = Poll.objects.using('other').create(question='Question 1')

>>> # This will also create a new historical record on the 'other' database.
>>> poll.save(using='other')

When interacting with QuerySets, use using():

>>> # This will return a QuerySet from the 'other' database.
Poll.history.using('other').all()

When interacting with manager methods, use db_manager():

>>> # This will call a manager method on the 'other' database.
>>> poll.history.db_manager('other').as_of(datetime(2010, 10, 25, 18, 4, 0))

See the Django documentation for more information on how to interact with multiple databases.

2.8.2 Tracking User in a Separate Database

When using django-simple-history in app with multiple database, you may run into an issue where you want
to track the history on a table that lives in a separate database to your user model. Since Django does not support cross-
database relations, you will have to manually track the history_user using an explicit ID. The full documentation
on this feature is in Manually Track User Model.

2.8.3 Tracking History Separate from the Base Model

You can choose whether or not to track models’ history in the same database by setting the flag use_base_model_db.

2.8. Multiple databases 23

django-simple-history Documentation, Release 3.1.0.post1+gbfc5204

class MyModel(models.Model):
...
history = HistoricalRecords(use_base_model_db=False)

If set to True, migrations and audit events will be sent to the same database as the base model. If False, they will be
sent to the place specified by the database router. The default value is False.

2.9 Utils

2.9.1 clean_duplicate_history

For performance reasons, django-simple-history always creates an HistoricalRecord when Model.
save() is called regardless of data having actually changed. If you find yourself with a lot of history duplicates you
can schedule the clean_duplicate_history command

$ python manage.py clean_duplicate_history --auto

You can use --auto to clean up duplicates for every model with HistoricalRecords or enumerate specific
models as args. There is also -m/--minutes to specify how many minutes to go back in history while searching
(default checks whole history), so you can schedule, for instance, an hourly cronjob such as

$ python manage.py clean_duplicate_history -m 60 --auto

You can also use --excluded_fields to provide a list of fields to be excluded from the duplicate check

$ python manage.py clean_duplicate_history --auto --excluded_fields field1 field2

2.9.2 clean_old_history

You may want to remove historical records that have existed for a certain amount of time.

If you find yourself with a lot of old history you can schedule the clean_old_history command

$ python manage.py clean_old_history --auto

You can use --auto to remove old historial entries with HistoricalRecords or enumerate specific models as
args. You may also specify a --days parameter, which indicates how many days of records you want to keep. The
default it 30 days, meaning that all records older than 30 days would be removed.

$ python manage.py clean_old_history --days 60 --auto

2.10 Common Issues

2.10.1 Bulk Creating and Queryset Updating

django-simple-history functions by saving history using a post_save signal every time that an object with
history is saved. However, for certain bulk operations, such as bulk_create, bulk_update, and queryset updates, signals
are not sent, and the history is not saved automatically. However, django-simple-history provides utility
functions to work around this.

24 Chapter 2. Documentation

https://docs.djangoproject.com/en/2.0/ref/models/querysets/#bulk-create
https://docs.djangoproject.com/en/3.0/ref/models/querysets/#bulk-update
https://docs.djangoproject.com/en/2.2/ref/models/querysets/#update

django-simple-history Documentation, Release 3.1.0.post1+gbfc5204

Bulk Creating a Model with History

As of django-simple-history 2.2.0, we can use the utility function bulk_create_with_history in
order to bulk create objects while saving their history:

>>> from simple_history.utils import bulk_create_with_history
>>> from simple_history.tests.models import Poll
>>> from django.utils.timezone import now
>>>
>>> data = [Poll(id=x, question='Question ' + str(x), pub_date=now()) for x in
→˓range(1000)]
>>> objs = bulk_create_with_history(data, Poll, batch_size=500)
>>> Poll.objects.count()
1000
>>> Poll.history.count()
1000

If you want to specify a change reason or history user for each record in the bulk create, you can add _change_reason,
_history_user or _history_date on each instance:

>>> for poll in data:
poll._change_reason = 'reason'
poll._history_user = my_user
poll._history_date = some_date

>>> objs = bulk_create_with_history(data, Poll, batch_size=500)
>>> Poll.history.get(id=data[0].id).history_change_reason
'reason'

You can also specify a default user or default change reason responsible for the change (_change_reason, _history_user
and _history_date take precedence).

>>> user = User.objects.create_user("tester", "tester@example.com")
>>> objs = bulk_create_with_history(data, Poll, batch_size=500, default_user=user)
>>> Poll.history.get(id=data[0].id).history_user == user
True

Bulk Updating a Model with History (New)

Bulk update was introduced with Django 2.2. We can use the utility function bulk_update_with_history in
order to bulk update objects using Django’s bulk_update function while saving the object history:

>>> from simple_history.utils import bulk_update_with_history
>>> from simple_history.tests.models import Poll
>>> from django.utils.timezone import now
>>>
>>> data = [Poll(id=x, question='Question ' + str(x), pub_date=now()) for x in
→˓range(1000)]
>>> objs = bulk_create_with_history(data, Poll, batch_size=500)
>>> for obj in objs: obj.question = 'Duplicate Questions'
>>> bulk_update_with_history(objs, Poll, ['question'], batch_size=500)
>>> Poll.objects.first().question
'Duplicate Question``

If your models require the use of an alternative model manager (usually because the default manager returns a filtered
set), you can specify which manager to use with the manager argument:

2.10. Common Issues 25

django-simple-history Documentation, Release 3.1.0.post1+gbfc5204

>>> from simple_history.utils import bulk_update_with_history
>>> from simple_history.tests.models import PollWithAlternativeManager
>>>
>>> data = [PollWithAlternativeManager(id=x, question='Question ' + str(x), pub_
→˓date=now()) for x in range(1000)]
>>> objs = bulk_create_with_history(data, PollWithAlternativeManager, batch_size=500,
→˓manager=PollWithAlternativeManager.all_polls)

QuerySet Updates with History (Updated in Django 2.2)

Unlike with bulk_create, queryset updates perform an SQL update query on the queryset, and never return the
actual updated objects (which would be necessary for the inserts into the historical table). Thus, we tell you that
queryset updates will not save history (since no post_save signal is sent). As the Django documentation says:

If you want to update a bunch of records for a model that has a custom
``save()`` method, loop over them and call ``save()``, like this:

for e in Entry.objects.filter(pub_date__year=2010):
e.comments_on = False
e.save()

Note: Django 2.2 now allows bulk_update. No pre_save or post_save signals are sent still.

2.10.2 Tracking Custom Users

• fields.E300:

ERRORS:
custom_user.HistoricalCustomUser.history_user: (fields.E300) Field defines a
→˓relation with model 'custom_user.CustomUser', which is either not installed, or
→˓is abstract.

Use register() to track changes to the custom user model instead of setting HistoricalRecords on
the model directly.

The reason for this, is that unfortunately HistoricalRecords cannot be set directly on a swapped user
model because of the user foreign key to track the user making changes.

2.10.3 Using django-webtest with Middleware

When using django-webtest to test your Django project with the django-simple-history middleware, you may run into
an error similar to the following:

django.db.utils.IntegrityError: (1452, 'Cannot add or update a child row: a foreign
→˓key constraint fails (`test_env`.`core_historicaladdress`, CONSTRAINT `core_
→˓historicaladdress_history_user_id_0f2bed02_fk_user_user_id` FOREIGN KEY (`history_
→˓user_id`) REFERENCES `user_user` (`id`))')

This error occurs because django-webtest sets DEBUG_PROPAGATE_EXCEPTIONS to true preventing the mid-
dleware from cleaning up the request. To solve this issue, add the following code to any clean_environment or
tearDown method that you use:

26 Chapter 2. Documentation

https://docs.djangoproject.com/en/2.2/ref/models/querysets/#update
https://github.com/django-webtest/django-webtest

django-simple-history Documentation, Release 3.1.0.post1+gbfc5204

from simple_history.middleware import HistoricalRecords
if hasattr(HistoricalRecords.context, 'request'):

del HistoricalRecords.context.request

2.10.4 Using F() expressions

F() expressions, as described here, do not work on models that have history. Simple history inserts a new record in
the historical table for any model being updated. However, F() expressions are only functional on updates. Thus,
when an F() expression is used on a model with a history table, the historical model tries to insert using the F()
expression, and raises a ValueError.

2.10.5 Reserved Field Names

For each base model that has its history tracked using django-simple-history, an associated historical model
is created. Thus, if we have:

class BaseModel(models.Model):
history = HistoricalRecords()

a Django model called HistoricalBaseModel is also created with all of the fields from BaseModel, plus a few
extra fields and methods that are on all historical models.

Since these fields and methods are on all historical models, any field or method names on a base model that clash with
those names will not be on the historical model (and, thus, won’t be tracked). The reserved historical field and method
names are below:

• history_id

• history_date

• history_change_reason

• history_type

• history_object

• history_user

• history_user_id

• instance

• instance_type

• next_record

• prev_record

• revert_url

• __str__

So if we have:

class BaseModel(models.Model):
instance = models.CharField(max_length=255)
history = HistoricalRecords()

the instance field will not actually be tracked on the history table because it’s in the reserved set of terms.

2.10. Common Issues 27

https://docs.djangoproject.com/en/2.0/ref/models/expressions/#f-expressions

django-simple-history Documentation, Release 3.1.0.post1+gbfc5204

2.10.6 Multi-table Inheritance

django-simple-history supports tracking history on models that use multi-table inheritance, such as:

class ParentModel(models.Model):
parent_field = models.CharField(max_length=255)
history = HistoricalRecords()

class ChildModel(ParentModel):
child_field = models.CharField(max_length=255)
history = HistoricalRecords()

A few notes:

• On the child model, the HistoricalRecords instance is not inherited from the parent model. This means
that you can choose to track changes on just the parent model, just the child model, or both.

• The child’s history table contains all fields from the child model as well as all the fields from the parent model.

• Updating a child instance only updates the child’s history table, not the parent’s history table.

2.10.7 Usage with django-modeltranslation

If you have django-modeltranslation installed, you will need to use the register() method to model
translation, as described here.

2.10.8 Pointing to the model

Sometimes you have to point to the model of the historical records. Examples are Django’s generic views or Django
REST framework’s serializers. You can get there through your HistoricalRecords manager you defined in your model.
According to our example:

class PollHistoryListView(ListView): # or PollHistorySerializer(ModelSerializer):
class Meta:

model = Poll.history.model
...

2.10.9 Working with BitBucket Pipelines

When using BitBucket Pipelines to test your Django project with the django-simple-history middleware, you will run
into an error relating to missing migrations relating to the historic User model from the auth app. This is because the
migration file is not held within either your project or django-simple-history. In order to pypass the error you need to
add a `python manage.py makemigrations auth` step into your YML file prior to running the tests.

2.10.10 Using custom OneToOneFields

If you are using a custom OneToOneField that has additional arguments and receiving the the following TypeError:

.. code=block:: python

TypeError: __init__() got an unexpected keyword argument

This is because Django Simple History coerces OneToOneField into ForeignKey on the historical model. You
can work around this by excluded those additional arguments using excluded_field_kwargs as follows:

28 Chapter 2. Documentation

https://github.com/jazzband/django-simple-history/issues/209#issuecomment-181676111

django-simple-history Documentation, Release 3.1.0.post1+gbfc5204

class Poll(models.Model):
organizer = CustomOneToOneField(Organizer, ..., custom_argument="some_value")
history = HistoricalRecords(

excluded_field_kwargs={"organizer": set(["custom_argument"])}
)

2.10. Common Issues 29

django-simple-history Documentation, Release 3.1.0.post1+gbfc5204

30 Chapter 2. Documentation

CHAPTER 3

Changes

3.1 Unreleased

3.2 3.1.0 (2022-04-09)

Breaking Changes:

• Dropped support for Django 2.2 (gh-968)

• Dropped support for Django 3.1 (gh-952)

• Dropped support for Python 3.6, which reached end-of-life on 2021-12-23 (gh-946)

Upgrade Implications:

• Run makemigrations after upgrading to realize the benefit of indexing changes.

Full list of changes:

• Added queryset-based filtering with as_of (gh-397)

• Added index on history_date column; opt-out with setting SIMPLE_HISTORY_DATE_INDEX (gh-565)

• RecordModels now support a no_db_index setting, to drop indices in historical models, default stays the
same (gh-720)

• Support included_fields for history.diff_against (gh-776)

• Improve performance of history.diff_against by reducing number of queries to 0 in most cases (gh-
776)

• Fixed prev_record and next_record performance when using excluded_fields (gh-791)

• Fixed update_change_reason in pk (gh-806)

• Fixed bug where serializer of djangorestframework crashed if used with OrderingFilter (gh-821)

• Fixed make format so it works by using tox (gh-859)

31

django-simple-history Documentation, Release 3.1.0.post1+gbfc5204

• Fixed bug where latest() is not idempotent for identical history_date records (gh-861)

• Added excluded_field_kwargs to support custom OneToOneField that have additional arguments
that don’t exist on ForeignKey. (gh-870)

• Added Czech translations (gh-885)

• Added ability to break into debugger on unit test failure (gh-890)

• Added pre-commit for better commit quality (gh-896)

• Russian translations update (gh-897)

• Added support for Django 4.0 (gh-898)

• Added Python 3.10 to test matrix (gh-899)

• Fix bug with history.diff_against with non-editable fields (gh-923)

• Added HistoricForeignKey (gh-940)

• Support change reason formula feature. Change reason formula can be defined by overriding
get_change_reason_for_object method after subclassing HistoricalRecords (gh-962)

3.3 3.0.0 (2021-04-16)

Breaking changes:

• Removed support for Django 3.0

• Removed changeReason in favor of _change_reason (see 2.10.0)

Full list of changes:

• Removed support for Django versions prior to 2.2 (gh-652)

• Migrate from TravisCI to Github Actions (gh-739)

• Add Python 3.9 support (gh-745)

• Support ignore_conflicts in bulk_create_with_history (gh-733)

• Use asgiref when available instead of thread locals (gh-747)

• Sort imports with isort (gh-751)

• Queryset history.as_of speed improvements by calculating in the DB (gh-758)

• Increase black and isort python version to 3.6 (gh-817)

• Remove Django 3.0 support (gh-817)

• Add Django 3.2 support (gh-817)

• Improve French translations (gh-811)

• Remove support for changeReason (gh-819)

3.4 2.12.0 (2020-10-14)

• Add default date to bulk_create_with_history and bulk_update_with_history (gh-687)

• Exclude ManyToManyFields when using bulk_create_with_history (gh-699)

32 Chapter 3. Changes

django-simple-history Documentation, Release 3.1.0.post1+gbfc5204

• Added --excluded_fields argument to clean_duplicate_history command (gh-674)

• Exclude ManyToManyFields when fetching excluded fields (gh-707)

• Use default model manager for bulk_create_with_history and bulk_update_with_history
instead of objects (gh-703)

• Add optional manager argument to bulk_update_with_history to use instead of the default manager
(gh-703)

• Add support for Django 3.1 (gh-713)

• Fix a bug with clean_old_history command’s –days argument (gh-722)

* NOTE: This will be the last minor release before 3.0.0.

3.5 2.11.0 (2020-06-20)

• Added clean_old_history management command (gh-675)

• Added user_db_constraint param to history to avoid circular reference on delete (gh-676)

• Leverages get_user from HistoricalRecords in order to set a fallback user on bulk update and bulk
create (gh-677)

3.6 2.10.0 (2020-04-27)

• Added bulk_update_with_history utility function (gh-650)

• Add default user and default change reason to bulk_create_with_history and
bulk_update_with_history (gh-653)

• Add french translation (gh-654)

• Start using _change_reason instead of changeReason to add change reasons to historical objects.
changeReason is deprecated and will be removed in version 3.0.0 (gh-655)

3.7 2.9.0 (2020-04-23)

• Add simple filtering if provided a minutes argument in clean_duplicate_history (gh-606)

• Add setting to convert FileField to CharField instead of TextField (gh-625)

• Added notes on BitBucket Pipelines (gh-627)

• import model ContentType in SimpleHistoryAdmin using django_apps.get_model to avoid
possible AppRegistryNotReady exception (gh-630)

• Fix utils.update_change_reason when user specifies excluded_fields (gh-637)

• Changed how now is imported from timezone (timezone module is imported now) (gh-643)

• settings.SIMPLE_HISTORY_REVERT_DISABLED if True removes the Revert button from the history
form for all historical models (gh-632))

3.5. 2.11.0 (2020-06-20) 33

django-simple-history Documentation, Release 3.1.0.post1+gbfc5204

3.8 2.8.0 (2019-12-02)

• Fixed bulk_create_with_history support for HistoryRecords with relation_name attribute
(gh-591)

• Added support for bulk_create_with_history for databases different from PostgreSQL (gh-577)

• Fixed DoesNotExist error when trying to get instance if object is deleted (gh-571)

• Fix model_to_dict to detect changes in a parent model when using inherit=True (backwards-
incompatible for users who were directly using previous version) (gh-576)

• Use an iterator for clean_duplicate_history (gh-604)

• Add support for Python 3.8 and Django 3.0 (gh-610)

3.9 2.7.3 (2019-07-15)

• Fixed BigAutoField not mirrored as BigInt (gh-556)

• Fixed most_recent() bug with excluded_fields (gh-561)

• Added official Django 2.2 support (gh-555)

3.10 2.7.2 (2019-04-17)

• Fixed ModuleNotFound issue for six (gh-553)

3.11 2.7.1 (2019-04-16)

• Added the possibility to create a relation to the original model (gh-536)

• Fix router backward-compatibility issue with 2.7.0 (gh-539, gh-547)

• Fix hardcoded history manager (gh-542)

• Replace deprecated django.utils.six with six (gh-526)

• Allow custom_model_name parameter to be a callable (gh-489)

3.12 2.7.0 (2019-01-16)

• * Add support for using chained manager method and save/delete keyword argument (gh-507)

• Added management command clean_duplicate_history to remove duplicate history entries (gh-483)

• Updated most_recent to work with excluded_fields (gh-477)

• Fixed bug that prevented self-referential foreign key from using 'self' (gh-513)

• Added ability to track custom user with explicit custom history_user_id_field (gh-511)

• Don’t resolve relationships for history objects (gh-479)

• Reorganization of docs (gh-510)

34 Chapter 3. Changes

django-simple-history Documentation, Release 3.1.0.post1+gbfc5204

* NOTE: This change was not backward compatible for users using routers to write history tables to a separate database
from their base tables. This issue is fixed in 2.7.1.

3.13 2.6.0 (2018-12-12)

• Add app parameter to the constructor of HistoricalRecords (gh-486)

• Add custom_model_name parameter to the constructor of HistoricalRecords (gh-451)

• Fix header on history pages when custom site_header is used (gh-448)

• Modify pre_create_historical_record to pass history_instance for ease of customization
(gh-421)

• Raise warning if HistoricalRecords(inherit=False) is in an abstract model (gh-341)

• Ensure custom arguments for fields are included in historical models’ fields (gh-431)

• Add german translations (gh-484)

• Add extra_context parameter to history_form_view (gh-467)

• Fixed bug that prevented next_record and prev_record to work with custom manager names (gh-501)

3.14 2.5.1 (2018-10-19)

• Add '+' as the history_type for each instance in bulk_history_create (gh-449)

• Add support for history_change_reason for each instance in bulk_history_create (gh-449)

• Add history_change_reason in the history list view under the Change reason display name (gh-458)

• Fix bug that caused failures when using a custom user model (gh-459)

3.15 2.5.0 (2018-10-18)

• Add ability to cascade delete historical records when master record is deleted (gh-440)

• Added Russian localization (gh-441)

3.16 2.4.0 (2018-09-20)

• Add pre and post create_historical_record signals (gh-426)

• Remove support for django_mongodb_engine when converting AutoFields (gh-432)

• Add support for Django 2.1 (gh-418)

3.17 2.3.0 (2018-07-19)

• Add ability to diff HistoricalRecords (gh-244)

3.13. 2.6.0 (2018-12-12) 35

django-simple-history Documentation, Release 3.1.0.post1+gbfc5204

3.18 2.2.0 (2018-07-02)

• Add ability to specify alternative user_model for tracking (gh-371)

• Add util function bulk_create_with_history to allow bulk_create with history saved (gh-412)

3.19 2.1.1 (2018-06-15)

• Fixed out-of-memory exception when running populate_history management command (gh-408)

• Fix TypeError on populate_history if excluded_fields are specified (gh-410)

3.20 2.1.0 (2018-06-04)

• Add ability to specify custom history_reason field (gh-379)

• Add ability to specify custom history_id field (gh-368)

• Add HistoricalRecord instance properties prev_record and next_record (gh-365)

• Can set admin methods as attributes on object history change list template (gh-390)

• Fixed compatibility of >= 2.0 versions with old-style middleware (gh-369)

3.21 2.0 (2018-04-05)

• Added Django 2.0 support (gh-330)

• Dropped support for Django<=1.10 (gh-356)

• Fix bug where history_view ignored user permissions (gh-361)

• Fixed HistoryRequestMiddleware which hadn’t been working for Django>1.9 (gh-364)

3.22 1.9.1 (2018-03-30)

• Use get_queryset rather than model.objects in history_view. (gh-303)

• Change ugettext calls in models.py to ugettext_lazy

• Resolve issue where model references itself (gh-278)

• Fix issue with tracking an inherited model (abstract class) (gh-269)

• Fix history detail view on django-admin for abstract models (gh-308)

• Dropped support for Django<=1.6 and Python 3.3 (gh-292)

36 Chapter 3. Changes

django-simple-history Documentation, Release 3.1.0.post1+gbfc5204

3.23 1.9.0 (2017-06-11)

• Add --batchsize option to the populate_history management command. (gh-231)

• Add ability to show specific attributes in admin history list view. (gh-256)

• Add Brazilian Portuguese translation file. (gh-279)

• Fix locale file packaging issue. (gh-280)

• Add ability to specify reason for history change. (gh-275)

• Test against Django 1.11 and Python 3.6. (gh-276)

• Add excluded_fields option to exclude fields from history. (gh-274)

3.24 1.8.2 (2017-01-19)

• Add Polish locale.

• Add Django 1.10 support.

3.25 1.8.1 (2016-03-19)

• Clear the threadlocal request object when processing the response to prevent test interactions. (gh-213)

3.26 1.8.0 (2016-02-02)

• History tracking can be inherited by passing inherit=True. (gh-63)

3.27 1.7.0 (2015-12-02)

• Add ability to list history in admin when the object instance is deleted. (gh-72)

• Add ability to change history through the admin. (Enabled with the SIMPLE_HISTORY_EDIT setting.)

• Add Django 1.9 support.

• Support for custom tables names. (gh-196)

3.28 1.6.3 (2015-07-30)

• Respect to_field and db_column parameters (gh-182)

3.29 1.6.2 (2015-07-04)

• Use app loading system and fix deprecation warnings on Django 1.8 (gh-172)

• Update Landscape configuration

3.23. 1.9.0 (2017-06-11) 37

django-simple-history Documentation, Release 3.1.0.post1+gbfc5204

3.30 1.6.1 (2015-04-21)

• Fix OneToOneField transformation for historical models (gh-166)

• Disable cascading deletes from related models to historical models

• Fix restoring historical instances with missing one-to-one relations (gh-162)

3.31 1.6.0 (2015-04-16)

• Add support for Django 1.8+

• Deprecated use of CustomForeignKeyField (to be removed)

• Remove default reverse accessor to auth.User for historical models (gh-121)

3.32 1.5.4 (2015-01-03)

• Fix a bug when models have a ForeignKey with primary_key=True

• Do NOT delete the history elements when a user is deleted.

• Add support for latest

• Allow setting a reason for change. [using option changeReason]

3.33 1.5.3 (2014-11-18)

• Fix migrations while using order_with_respsect_to (gh-140)

• Fix migrations using south

• Allow history accessor class to be overridden in register()

3.34 1.5.2 (2014-10-15)

• Additional fix for migrations (gh-128)

3.35 1.5.1 (2014-10-13)

• Removed some incompatibilities with non-default admin sites (gh-92)

• Fixed error caused by HistoryRequestMiddleware during anonymous requests (gh-115 fixes gh-114)

• Added workaround for clashing related historical accessors on User (gh-121)

• Added support for MongoDB AutoField (gh-125)

• Fixed CustomForeignKeyField errors with 1.7 migrations (gh-126 fixes gh-124)

38 Chapter 3. Changes

django-simple-history Documentation, Release 3.1.0.post1+gbfc5204

3.36 1.5.0 (2014-08-17)

• Extended availability of the as_of method to models as well as instances.

• Allow history_user on historical objects to be set by middleware.

• Fixed error that occurs when a foreign key is designated using just the name of the model.

• Drop Django 1.3 support

3.37 1.4.0 (2014-06-29)

• Fixed error that occurs when models have a foreign key pointing to a one to one field.

• Fix bug when model verbose_name uses unicode (gh-76)

• Allow non-integer foreign keys

• Allow foreign keys referencing the name of the model as a string

• Added the ability to specify a custom history_date

• Note that simple_history should be added to INSTALLED_APPS (gh-94 fixes gh-69)

• Properly handle primary key escaping in admin URLs (gh-96 fixes gh-81)

• Add support for new app loading (Django 1.7+)

• Allow specifying custom base classes for historical models (gh-98)

3.38 1.3.0 (2013-05-17)

• Fixed bug when using django-simple-history on nested models package

• Allow history table to be formatted correctly with django-admin-bootstrap

• Disallow calling simple_history.register twice on the same model

• Added Python 3 support

• Added support for custom user model (Django 1.5+)

3.39 1.2.3 (2013-04-22)

• Fixed packaging bug: added admin template files to PyPI package

3.40 1.2.1 (2013-04-22)

• Added tests

• Added history view/revert feature in admin interface

• Various fixes and improvements

3.36. 1.5.0 (2014-08-17) 39

django-simple-history Documentation, Release 3.1.0.post1+gbfc5204

3.41 Oct 22, 2010

• Merged setup.py from Klaas van Schelven - Thanks!

3.42 Feb 21, 2010

• Initial project creation, with changes to support ForeignKey relations.

40 Chapter 3. Changes

Index

H
history_change_reason, 22
history_date, 22
history_instance, 22
history_user, 22

I
instance, 22

U
using, 22

41

	Contribute
	Documentation
	Quick Start
	Querying History
	Admin Integration
	Historical Model Customizations
	User Tracking
	Signals
	History Diffing
	Multiple databases
	Utils
	Common Issues

	Changes
	Unreleased
	3.1.0 (2022-04-09)
	3.0.0 (2021-04-16)
	2.12.0 (2020-10-14)
	2.11.0 (2020-06-20)
	2.10.0 (2020-04-27)
	2.9.0 (2020-04-23)
	2.8.0 (2019-12-02)
	2.7.3 (2019-07-15)
	2.7.2 (2019-04-17)
	2.7.1 (2019-04-16)
	2.7.0 (2019-01-16)
	2.6.0 (2018-12-12)
	2.5.1 (2018-10-19)
	2.5.0 (2018-10-18)
	2.4.0 (2018-09-20)
	2.3.0 (2018-07-19)
	2.2.0 (2018-07-02)
	2.1.1 (2018-06-15)
	2.1.0 (2018-06-04)
	2.0 (2018-04-05)
	1.9.1 (2018-03-30)
	1.9.0 (2017-06-11)
	1.8.2 (2017-01-19)
	1.8.1 (2016-03-19)
	1.8.0 (2016-02-02)
	1.7.0 (2015-12-02)
	1.6.3 (2015-07-30)
	1.6.2 (2015-07-04)
	1.6.1 (2015-04-21)
	1.6.0 (2015-04-16)
	1.5.4 (2015-01-03)
	1.5.3 (2014-11-18)
	1.5.2 (2014-10-15)
	1.5.1 (2014-10-13)
	1.5.0 (2014-08-17)
	1.4.0 (2014-06-29)
	1.3.0 (2013-05-17)
	1.2.3 (2013-04-22)
	1.2.1 (2013-04-22)
	Oct 22, 2010
	Feb 21, 2010

	Index

